Meta-domains for Automated Model Building *

Matthew Easley
Elizabeth Bradley

CU-CS-898-99

@\jUniversity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1999 2. REPORT TYPE 00-00-1999 to 00-00-1999
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Meta-domains for Automated Model Building £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






In review, AAAI-00

Meta-domains for Automated Model Building
Techincal Report #CU-CS-898-00

Matthew Easley and Elizabeth Bradley *
University of Colorado at Boulder
Department of Computer Science

Boulder, Colorado 80309-0430
{easley,lizb}@cs.colorado.edu

Abstract

We present a new knowledge representation and reason-
ing framework for modeling nonlinear dynamical sys-
tems. The goals of this framework are to smoothly
incorporate varying levels of domain knowledge and to
tailor the search space and the reasoning methods ac-
cordingly. In particular, we introduce a new structure
for automated model building known as a meta-domain
which, when instantiated with components, tailors the
space of candidate models to the system at hand. The
xmission-line meta-domain, for instance, generalizes
the notion of an electrical transmission line, using an it-
erative template to build models; it may be customized
into specific model-building domains ranging from me-
chanical vibrations to thermal conduction. We combine
this with ideas from generalized physical networks, a
meta-level representation of idealized two-terminal el-
ements, and a hierarchy of qualitative and quantita-
tive analysis tools, to produce dynamic modeling do-
mains whose complexity naturally adapt to the amount
of available information about the target system.

Introduction

System identification (SID) is the process of identifying
a dynamic model of an unknown system. The challenges
involved in automating this process are significant, as
applications in different fields of science and engineer-
ing demand different kinds of models and modeling tech-
niques. System identification entails two steps: struc-
tural identification, wherein one ascertains the general

form of the model as described by an ordinary differ- .

ential equation or ODE (e.g., a;6 + azsind = 0 for a
simple pendulum), and then parameter estimation, in
which one finds specific parameter values for the un-
known coefficients that fit that model to observed data
(e.g. a3 = 1.0, ag = —98.0). For nonlinear systems,

parameter estimation is difficult and structural identifi- .

cation is even harder; Al techniques can be used to auto-
mate the former(Bradley, O’Gallagher, & Rogers 1998),

*Supported by NSF NYI #CCR-9357740, ONR
#N00014-96-1-0720, and a Packard Fellowship in Science
and Engineering from the David and Lucile Packard

Foundation.
Copyright © 2000, American Association for Artificial In-

telligence (www.aaal.org). All rights reserved.

but the latter has, until now, remained the purview of
human experts.

A central problem in any automated modeling task is
that model complexity, and hence the size of the search
space, is exponential in the number of model compo-
nents unless severe restrictions are placed on the model-

~ building process. A good compromise between black-

box modeling, which uses no domain knowledge but has
a prohibitively large search space, and clear-box mod-
eling, where the modeler knows a great deal about the
system, is gray-box modeling. Here, partial information
about the internals of the box—e.g., whether the system
is electronic or viscoelastic—is used to prune the search
space to a reasonable size. The key to making gray-box
modeling of nonlinear dynamical systems practical is a
flexible knowledge representation scheme that adapts to
the problem at hand. Domain-dependent knowledge can
drastically reduce the search-space size but its applica-
bility is limited. .

" Our solution combines a representation that allows
for different levels of domain knowledge, a set of reason-
ing techniques that are appropriate to each level, and a
control strategy that invokes the right technique at the
right time. In particular, we introduce a new structure
for automated model building known as a meta-domain
which, when instantiated with domain components, tai-
lors the model generation search space to an identifica-
tion task. To increase a meta-domain’s applicability and
utility, we also incorporate ideas from generalized physi-
cal networks{Sanford 1965), a meta-level representation
of idealized two-terminal elements, traditional compo-
sitional model building(Falkenhainer & Forbus 1991),
and qualitative reasoning(Weld & de Kleer 1990). The
intent is to span the spectrum between highly specific
frameworks that work well in a single, limited domain
(e.g., a spring/dashpot vocabulary for modeling simple
mechanical systems) and abstract frameworks that rely
heavily upon general mathematical formalisms at the
expense of having large search spaces.

Meta-domains for Model Building

Theoretically, an automated system identification tool
could rely solely upon a brute-force model generator for
its structural identification phase and a nonlinear pa-



In review, AAAI-00

rameter estimator for its testing phase. However, many
implementation issues make this idea wholly impracti-
cal. Parameter estimation is extremely expensive and
even simple application domains have an exponential
number of valid models. Consider, for example, all of
the permutations of connecting a single electrical resis-
tor, capacitor, and inductor together in parallel and/or
series. Although the complete set of permutations does
describe all possible models that can be built with this
set of components, the number of functionally differ-
ent models in the set is significantly less. The keys to
the structural identification phase are (1) to create an
appropriate set of models that describes interesting be-
haviors without creating an overly large search space
and (2) to test them using abstract, high-level reason-
ing whenever possible.

Unfortunately, the knowledge required to accomplish
this is quite heterogeneous, varying greatly in utility,
applicability, and form. More-restrictive domains tend
to admit more-powerful analysis tools and have much
smaller search spaces. In linear mechanical systems, an
impulse response shows the natural resonant and anti-
resonant frequencies as spikes, and the mode shapes
between those spikes show whether a vibrating me-
chanical system is mass- or stiffness-dominated(Juang
1994). In viscoelastics, an even more restrictive domain,
three qualitative properties of a “strain test” reduce the
search space of models to linear(Capelo, Ironi, & Ten-
toni 1998). Assessing how and when to apply these
types of tools and domain knowledge is a non-trivial
knowledge representation and reasoning problem.

Our term for the specific knowledge and tools used
to automatically generate and test models is a model-
building domain, which contains:

s A set of prototypical domain components

e A model generator—a function that combines com-
ponents into candidate models

e A set of data analysis tools that create qualitative and
quantitative knowledge appropriate to the system at
hand

e A set of rules and associated reasoning modes that

‘apply this knowledge to discover inconsistencies be-

tween the candidate model and the unknown system.

Model building domains are similar in that they begin
with a set of components and return a candidate ODE
model; they differ not only in their generality (and thus
the size of their search spaces) but also in the type and
utility of their analysis tools, reasoning modes and rules.

Creating individual model-building domains from
scratch for each specific application is inefficient as
much of the model generation knowledge and many
of the tools actually apply to more than one do-
main. Organizing model-building domains into a hierar-
chy of generality allows more-general domains, such as
linear-systems, to be easily customizable into more-
specific ones, such as linear-mechanical-systems.
Analysis tools may also exploit this hierarchy. Non-
linear time-series analysis, for example, can reveal the

2

lower bound on the dimensionality of any system of
ODEs, whereas a step response test is only useful in
modeling linear systems, and a creep test is even more
domain-specific. Model-building components may take
advantage of this hierarchy as well by using general-
ized physical networks (GPNs), an energy based model-
ing paradigm similar to bond graphs. Here, similar-
ities between components and properties in different
domains are brought out through generalized compo-
nents such as linear-resistance, which models en-
ergy dissipation. This abstract component may be
customized—into linear-resistor, linear-damper,
etc.—depending upon the application. Available do-
main knowledge expands or contracts based upon the
problem, selectively sharpening the model in appropri-
ate and useful ways. '

Hierarchical knowledge also exists for the model gen-
eration phase, which is critical, as haphazardly connect-
ing arbitrary components creates an exponential num-
ber of candidate models. One way of reducing this num-
ber is to use a meta-domain: a general framework that
arranges components into models by relying on model-
ing techniques that transcend individual application do-
mains. This paper introduces two such meta-domains:
linear-plus and xmission-line. The linear-plus
meta-domain takes advantage of fundamental linear-
systems properties that allow the linear and nonlin-
ear components to be treated separately under certain
circumstances, which dramatically reduces the model
search space. The xmission-line meta-domain gener-
alizes the notion of building models using an iterative
pattern, similar to a standard model of a transmission
line, which is useful in modeling distributed systems.
Meta-domains can be customized into more-specific do-
mains or used directly; we demonstrate both approaches

- in the following section. We chose this pair of meta-

domains as a good initial set because they cover a wide
variety of practical engineering problems. We are ex-
ploring other possible meta-domains, especially for the
purposes of modeling nonlinear networks.

Applying Meta-domains in PRET

PRET(Bradley & Stolle 1996) is an automatic SID tool
that constructs ordinary differential equation (ODE)
models of lumped-parameter continuous-time nonlin-
ear dynamic systems. It takes a generate-and-test
approach, using a small, powerful domain theory to
build models, and then uses a body of mathematical
and physical knowledge encoded in first-order logic to
test those candidate ODEs against behavioral observa-
tions of the target system. Unlike other AI modeling
tools—most of which use libraries to build models
of small, well-posed problems in limited domains—
PRET builds models of nonlinear systems in multiple
domains and uses sensors and actuators to interact
directly and automatically with the target system.
PRET relies heavily on the notions of model-building
domains and meta-domains. It currently incorpo-
rates five specific GPN-based modeling domains:



In review, AAAI-00

M
K B
road
Figure 1: A  one-degree-of-freedom quarter-vehicle

model that includes a shock absorber—a viscous damp-
ing element, B—connected in parallel with a spring, K,
and the loading effects of the car, M.

mechanics, viscoelastics, linear-electronic,
linear-rotational, and linear-mechanical. These
domains are dynamic: if a domain does not contain a
-successful model, it automatically expands to include
additional components. For example if PRET fails
to find a model in the linear-electronics domain,
whose basic components include {linear-resistor,
linear-capacitor}, that domain automatically ex-
pands to include linear-inductor. If a user wants
to apply PRET to a system that does not fall in an
existing domain, he or she can either build one from
scratch—a matter of making a list of components and
connectors—or use one of the meta-domains. PRET’s
two meta-domains, linear-plus and xmission-line,
exploit modeling techniques that transcend individual
application domains: linear system fundamentals in the
former and an iterative structure in the second. PRET
has successfully been applied to a variety of system
identification tasks, ranging from textbook engineering
problems to a radio-controlled car used in a deployed
robotics system(Bradley, O’Gallagher, & Rogers 1998).
This section presents two examples that demonstrate
how domains and meta-domains contribute to this
process.

Modeling a Shock Absorber

Hydraulic shock absorbers, common in modern com-
mercial vehicles, are complex nonlinear devices whose
behavior depends upon the amplitude and frequency of
the imposed motion. Accurate mathematical models
of this behavior are key to realistic vehicle simulations
and active-suspension controllers. Shock-absorber mod-
els normally come in two forms: either as a stand-alone
shock absorber—typically just a connected spring and
damper element—or as part of a quarter-vehicle model,
where the loading effects of one quarter of the vehicle are
included. The effects of different shock absorbers in one-
and two-degree-of-freedom quarter vehicle models may
be found in (Langlois & Anderson 1997); the behav-
ior of five damper model variants, such as “no spring,”
“velocity-dependent damping,” or “no linear spring,” is
described by (Besinger, Cebon, & Cole 1997). This is
exactly the kind of expert reasoning that motivated the
design of the domain knowledge framework described
here; these kinds of similarities make it easy for engi-

L

Deﬂqoﬁgn

Loy

Figure 2: Step responses of (a) a hydraulic shock ab-
sorber (dotted) (b) an unsuccessful candidate model
with a linear spring (dashed) and (c) a successful model,
which incorporates a cubic spring (solid).

(find-model .
(domain linear-mechanics)
(hypotheses
(<force> (x k (cube (integral <v>))))
(<force> (* b <v>)))
(drive (<force> d))
(observations
(numeric (<time> <position>)
(€0 1.3) (0.1 1.2) ...))) ...)

Figure 3: A find-model call for the shock absorber.
The state variable <v> is velocity (ie. v = %f, where
z = <position> is the deflection from equilibrium).
The numeric observation is the noisy dotted time se--

ries shown in the previous figure.

neers to use PRET on real problems.

As shown in the find-model call fragment in Figure
3, the user initializes PRET on this modeling problem
by specifying the domain (linear-mechanics), a few
hypotheses ?a spring force that obeys a cubic version
of Hooke’s law and a viscous friction term), a constant
drive term that represents a constant normal force on
the suspension, and a noisy time-series measurement of
the deflection (shown graphically in Figure 2(a)). By
default, the linear-mechanics domain includes linear
damping, inertia, and spring components, so the user
need ‘not enter.them explicitly; PRET’s model gener-
ator will automatically include them along with the
user-specified hypotheses. Geometric pre-processing of
the numerical observation shows that the state vari-
able <x> undergoes a damped oscillation to a fixed
point. From these facts, PRET’s model tester(Stolle &
Bradley 1998) deduces (among other things) that the
order of any linear model must be at least two. This
qualitative information lets PRET immediately rule out
the first dozen or so candidate models. Proceeding to
slightly more complex ODEs, PRET generates the model
aZ + bz + cx + d = 0, which is made up of three built-in
domain hypotheses and the user’s drive hypothesis. Its
model tester cannot rule out this model using qualitative
reasoning techniques, and so is forced to invoke its non-
linear parameter estimator to establish that the solution
to this ODE, shown in Figure 2(b), does not match the
numeric observation shown in Figure 2(a). After dis-
carding a variety of other unsuccessful candidate mod-
els by various means, PRET eventually generates and
tests the ODE a% + b2 + cz + kz® + d = 0. This model
passes all qualitative and quantitative checks, and so is



In review, AAAI-Q0

returned as PRET’s output:

. no refutation ...
(model ((= (+ (* (comnst a) (deriv (deriv <x>)))
(¥ (const b) (deriv <x>))
(* (const c) <x>)
(* (comst k) <x> <x> <x>)
(const d)) 0)
((a 1.00) (b 0.50) (c 0.31) (k 0.024) (4 1.30))))

The linear-mechanics domain can be implemented
in several ways. The easiest is to use the linear-plus
meta-domain and add several domain-specific
components:  linear-mass, linear-damping and
linear-spring. These are just the generalized compo-
nents linear-capacitance, linear-resistance and
linear-inertia—renamed in a manner that makes
their meaning obvious to someone who would be using
the linear-mechanics domain. Jargon matching is
only a small part of the power of meta-domain cus-
tomization, however; domain knowledge allows PRET
to selectively sharpen its knowledge. If PRET knows
that the system is linear and mechanical, for instance,
the general component linear-inertia takes on the
more-specific meaning associated with linear-spring,
such as the knowledge that mechanical springs often
have appreciable mass and internal friction that cannot
be neglected.

- Implementing the linear-mechanics domain using
the linear-plus meta-domain has another very impor-
tant advantage for problems like this, which have a few
drive terms and a few nonlinear terms. linear-plus
separates components into a linear and a non-linear set
in order to take advantage of two fundamental proper-
ties of linear systems: (1) there are a polynomial number
of unique nth-order linear ODEs(Brogan 1991), and (2)
linear system inputs (drive terms) appear verbatim in
the resulting ODE system. The first of these proper-
ties converts an otherwise-exponential search space to
polynomial; functionally equivalent linear networks re-
duce to the same Laplace transform transfer function,
which allows PRET to identify and rule out any ODEs
that are equivalent to models that have already failed
the test. The second property allows this meta-domain
(and thus any specific domain constructed upon it) to
handle a limited number of nonlinear terms by treat-
ing them as system inputs. As long as the number of
nonlinear hypotheses remains small, the search space of
possible models remains tractable.

One could also use the linear-plus domain directly
for this problem simply by specifying a few extra hy-
potheses (e.g., aZ, and so on). The only effect would be
on PRET’s run time, as it would no longer be able to
use domain knowledge to streamline the generate and
test phases. The best course of action is to use as
much domain knowledge as possible, and PRET’s layered
domain/meta-domain framework is designed to make it
easy to do so.

land surface

NN
water level

Figure 4: An idealized representation of an open well
penetrating an artesian aquifer. The motion of the wa-
ter level in the well is controlled by sinusoidal fluctua-
tions of the pressure in the aquifer.

Water Resource Systems

Water resource systems are made up of streams, dams,
reservoirs, wells, aquifers, etc. In order to design, build,
and/or manage these systems, engineers must model
the relationships between the inputs (e.g., rainfall), the
state variables (e.g., reservoir levels), and the outputs
(e.g., the flow to some farmer’s irrigation ditch). To do
this in a truly accurate fashion requires partial differen-
tial equations (PDEs) because the physics of fluids in-
volves multiple independent variables—not just time—
and an infinite number of state variables. PDEs are
extremely hard to work with, however, so the state of
the art in the water resource engineering field falls far
short of that. Most existing water resource applications,
such as river-dam or well-water management systems,
use rule-based or statistical models. ODE models, which
capture the dynamics more accurately than these simple
models but are not as difficult to handle as PDEs, are
a good compromise between these two extremes, and
the water resource community has begun to take this
approach(Bredehoeft, Gooper, & Papadopulos 1966;
Chin 2000). In this section, we use PRET to duplicate
some of these research results and model the effects of
sinusoidal pressure fluctuation in an aquifer on the level
of water in a well that penetrates that aquifer. See Fig-
ure 4 for a schematic. This example is a particularly
good demonstration of how domain knowledge and the
structure inherited from the meta-domain let the model
generator build systems without creating an overwhelm-
ing number of models. This is especially useful when
none of PRET’s existing domains matches a user’s appli-
cation area. This example also demonstrates how GPNs
allow PRET to model a variety of systems using the same
underlying representation and to incorporate the load
effects easily and naturally into the model.

The first step in describing this modeling problem
to PRET is to specify a domain. Because there is no
built-in “water resource” domain, the user would have
to choose (and perhaps customize) one of the meta-
domains. For this problem, the choice is obvious, as the
xmission-line meta-domain is specifically designed for
this kind of distributed physics, which turns up in fluid
flows, vibrating strings, gas acoustics, thermal conduc-



In review, AAAI-00
1 ~{An
1

Figure 5: The xmission-line meta-domain allows
PRET to use its lumped-element GPN components to
model spatially distributed systems.

tion and diffusion, etc.(Ghausi & Kelly 1968). This
meta-domain serves as a bridge between two very differ-
ent paradigms. GPN components represent prototypical
lumped elements, each of which models a single physical
component, whereas a system like a transmission line or
a guitar string can be thought of as an infinite number
of small elements (the basis of a PDE model). Using the
former to model the latter requires an incremental ap-
proach. In particular, one can approximate a spatiotem-
porally distributed system using an iterative structure
with a large number of identical lumped sections, each
of which corresponds to an ODE term. Figure 5 shows
a diagram of this: a generalized iterative two-port net-
work with n sections, each of which has a serial (4;) and
a parallel (B;) component. In a basic model of an elec-
trical transmission line, for example—whence the name
of the xmission-line meta-domain—typical electrical
parameters, such as resistance or inductance, are given
in per-unit-length form, and the 4; and B; would cor-
respond to resistors and capacitors, respectively.

As in the shock absorber example, PRET’s user
can either customize the meta-domain or use it di-
rectly. For the well/aquifer problem, this customiza-
tion would consist of renaming the general components
linear-capacitance, ~inertia, and -resistance to
match the standard domain vocabulary; capacitive and
resistive effects, in particular, simulate radial flow in an
aquifer, and water mass is treated as inertia. (These
concepts and equivalences, which appear in every text-
book, are a routine part of a water-resource practi-

tioner’s knowledge.) The domain could be further cus-

tomized based upon knowledge of the aquifer’s forcing
function; if the water’s velocity changes slowly, for ex-
ample, inertia effects can normally be ignored. For the
purposes of demonstrating how one uses a meta-domain
directly, however, we omit this customization in this
example, so the find~model call of Figure 6 simply in-
stantiates the xmission-line meta-domain.

This call differs from the previous examples in a va-
riety of ways. This meta-domain has no built-in com-
ponents; it only provides the template of an iterative
network structure. PRET must therefore rely solely
on user-specified hypotheses!. State variables in hy-
potheses bear domain-independent names like <effort>
and <flow>, rather than domain-specific ones like

'In other domains, PRET uses power-series expansions if
it runs out of user hypotheses. Since the basic paradigm in
xmission-line is essentially a spatial expansion, a power-
series expansions would be a duplication of effort.

(find-model
(domain xmission-line)
. (state-variables (<well-flow> <flow>)) ...
(hypotheses
(<effort> (% ¢ (integral <flow>)))
(Keffort> (* 1 (deriv <flow>)))
(Keffort> (* r <flow>)))
(drive (Keffort> (* da (sin (* df <time>)))))
(observations
(not-constant <well-flow>)
(not-constant (deriv <well-flow>))
(numeric (<time> <well-flow> (deriv <well-flow>))

((0 4.0 0.5) (0.1 4.25 0.6) ...0)) ...)
Figure 6: A find-model call fragment for the
well/aquifer example of Figure 4.

Source ‘ Aquifer Well
Ci L Cx L Cw Lw

1 1

1 i

1 . |

] 1

[ I

i 1

§ '

] R R | <well -!19w> R
X 1 2, W
1 ) 1

T T

Figure 7: PRET’s model of the well/aquifer system.
The drive, V' = d,sindyt, simulates a sinusoidal
pressure fluctuation in the aquifer; the arrow labeled
<well-flow> in the network corresponds to the wa-
ter flow into and out of the well. Note how the
xmission-line meta~domain and GPN components
naturally incorporate the load (the well) into the model.

<force>, or <water-flow>. The xmission-line meta-
domain builds models with an iterative structure, using
these <flow> and <effort> hypotheses as the paral-
lel and series components of the sections and dynam-
ically creating instances of each kind of state variable
(e.g. <flow3>) as segments are added to the model.
Since numeric observations describe specific state vari-
ables (e.g. the numerical observation of <well-flow> in
the find-model call), their identifiers are prespecified
in the state-variables line of the call. Finally, the
well/aquifer includes a nonautonomous drive term that
has an explicit time dependence.

As before, PRET automatically searches the space of
possible models, using the xmission-1line meta-domain
template to build models and qualitative and quantita-
tive techniques to test them, until a successful model
is found. The result is shown in Figure 7. A perfect
model of an infinite-dimensional PDE requires an infi-
nite number of discrete sections, but one can construct
approximations using only a few sections, and the fi-
delity of the match rises with the number of sections?.
In this case, PRET used two xmission~1line sections to
model the aquifer and one to model the well. This incor-
poration of the well as an integral part of the model is
an important feature of the model-building framework

*Hence the notion of an ODE truncation of a PDE, which
is exactly what PRET is constructing here.



‘In review, AAAT-00

described in this paper. Finally, like 1inear-plus, the
xmission-line meta-domain lets PRET avoid duplica-
tion of effort. Connecting arbitrary components in par-
allel and series creates an exponential number of mod-
els, many of which are mathematically equivalent (cf.,
Thévenin and Norton equivalents, in network theory).
This meta-domain avoids this duplication by first lim-
iting the number of possible component combinations
in the initial network model (4; and B of Figure 5),
and then incrementing this structure to a limited depth
before attempting another initial network.

Related Work

Much of the pioneering work in the qualitative reasoning
(QR) modeling community focuses on reasoning about
pre-existing models: simulating them(Kuipers 1986),
simplifying and refining them(Weld 1992), or keeping
track of which model is appropriate in which regime(Ad-
danki, Cremonini, & Penberthy 1991). QR model con-
struction research has focused on building models from
fragments(Bobrow et al. 1996; Falkenhainer & Forbus

'1991). PRET uses some of the same techniques but has

different goals and a different overall approach: it works
with noisy, incomplete sensor data from real-world sys-
tems and attempts not to “discover” the underlying
physics, but rather to find the simplest ODE that ac-
counts for the given observations.

In the QR research that is most closely related to
PRET’s domains and meta-domains, ODE models are
built by evaluating time series using qualitative reason-
ing techniques and then using parameter estimation to
match the resulting model with a given observed sys-
tem(Capelo, Ironi, & Tentoni 1998). This approach
differs from the techniques presented in this paper in
that it selects models from a set of pre-enumerated so-
lutions in a very specific domain (linear viscoelastics).
Amsterdam’s automated model construction tool(Ams-
terdam 1992) uses a similar underlying component rep-
resentation (bond graphs) and is applicable to multiple
domains. However, it is also somewhat limited; it can
only model linear systems of order two or less. The
domain/meta-domain framework described in this pa-
per is much more general; it works on linear and non-
linear lumped-parameter continuous-time ODEs in a va-
riety of domains, and it uses dynamic model generation
to handle arbitrary devices and connection topologies.

Conclusion

Model-building domains and meta-domains, coupled
with generalized physical networks and & hierarchy of
qualitative and quantitative reasoning tools that relate
observed physical behavior and model form, provide the
flexibility required for gray-box modeling of nonlinear
dynamical systems. The two meta-domains introduced
in this paper, linear-plus and xmission-line, use
modeling techniques that transcend individual appli-
cation domains to create rich and yet tractable model
search spaces. This framework is flexible as well as pow-
erful; one can use meta-domains directly or customize

6

them to fit a variety of engineering applications. Both
domains and meta-domains adapt smoothly to varying
levels of domain knowledge.

References

Addanki, S.; Cremonini, R.; and Penberthy, J. 1991.
Graphs of models. Artificial Intelligence 51:145-178.
Amsterdam, J. 1992. Automated Qualitative Modeling
of Dynamic Physical Systems. Ph.D. diss., MIT.
Besinger, F.; Cebon, D.; and Cole, D. 1997. Damper
models for heavy vehicle ride dynamics. Vehicle System
Dynamics 24:35-64. »
Bobrow, D.; Falkenhainer, B.; Farquhar, A.; Fikes, R.;
Forbus, K.; Gruber, T.; Iwasaki, Y.; and Kuipers, B.
1996. A compositional modeling language. In QR-96.
Bradley, E., and Stolle, R. 1996. Automatic construc-
tion of accurate models of physical systems. Annals of
Mathematics and Artificial Intelligence 17:1-28.
Bradley, E.; O’Gallagher, A.; and Rogers, J. 1998.
Global solutions for nonlinear systems using qualita-
tive reasoning. Annals of Mathematics and Artificial
Intelligence 23:211-228.

Bredehoeft, J.; Cooper, H.; and Papadopulos, I. 1966.
Inertial and storage effects in well-aquifer systems. Wa-
ter Resource Research 2:697-707.

Brogan, W. 1991. Modern Control Theory. New Jersey:
Prentice-Hall, 3rd edition.

Capelo, A.; Ironi, L.; and Tentoni, S. 1998. Automated
mathematical modeling from experimental data: An
application to material science. IEEE Transactions on
Systems, Man and Cybernetics - C 28:356-370.

Chin, D. 2000. Water-Resource Engineering. New
Jersey: Prentice Hall.

Falkenhainer, B., and Forbus, K. 1991. Compositional
modeling: Finding the right model for the job. Artifi-
cial Intelligence 51:95-143.

Ghausi, M., and Kelly, J. 1968. Introduction to
Distributed-Parameter Networks. Holt.

Juang, J.-N. 1994. Applied System Identification. En-
glewood Cliffs, N.J.: Prentice Hall.

Kuipers, B. 1986. Qualitative simulation. Artificial
Intelligence 29:289-338.

Langlois, R., and Anderson, R. 1997. Preview con-
trol algorithms for the active suspension of an off-road
vehicle. Vehicle System Dynamics 24:65-97.

Sanford, R. 1965. Physical Networks. Prentice-Hall.

Stolle, R., and Bradley, E. 1998. Multimodal reasoning
for automatic model construction. In AAAI-98.

Weld, D., and de Kleer, J., eds. 1990. Readings in
Qualitative Reasoning About Physical Systems. San
Mateo CA: Morgan Kaufmann.

Weld, D. 1992. Reasoning about model accuracy. Ar--

tificial Intelligence 56:255-300.



